These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Interaction of high mobility group-I (Y) nonhistone proteins with nucleosome core particles. Author: Reeves R, Nissen MS. Journal: J Biol Chem; 1993 Oct 05; 268(28):21137-46. PubMed ID: 8407950. Abstract: Mammalian high mobility group (HMG)-I(Y) chromosomal proteins bind with high affinity to the minor groove of A. T-rich sequences of DNA both in vitro and in vivo. Electrophoretic mobility shift assays demonstrate that in vitro both native and recombinant human HMG-I proteins also bind, but with lower affinity, to preferred regions on isolated avian nucleosome core particles containing approximately 146 base pairs of random sequence DNA. Up to four discrete HMG-I core particle complexes can be detected by electrophoretic mobility shift assays when increasing molar ratios of protein are associated with cores. Both protein-DNA and protein-protein interactions are involved in HMG-I binding to cores. The interaction of HMG-I with core DNA is demonstrated by both thermal denaturation and DNase I footprinting experiments. Chemical cross-linking studies employing reversible photoactivatable cross-linkers, combined with one- and two-dimensional electrophoretic analyses, indicate that in vitro HMG-I binds to cores in close proximity to histones H2A and H2B and H3. In situ cross-linking of K562 human erythroleukemia cell nuclei demonstrate that native HMG-I(Y) binds in a similar manner to nucleosomal histones in vivo. Proteolytic removal of the positively charged amino-terminal tails of the octamer histones abolishes binding of HMG-I to core particles. However, core binding is not mediated by the negatively charged carboxyl-terminal tail of the HMG-I protein since an in vitro produced mutant protein lacking this region binds to core particles in a manner similar to full-length HMG-I. Together these results demonstrate that HMG-I, both in vitro and in vivo, binds to preferred regions on the front face of core nucleosomes.[Abstract] [Full Text] [Related] [New Search]