These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Hybridization probes for conventional DNA fingerprinting used as single primers in the polymerase chain reaction to distinguish strains of Cryptococcus neoformans.
    Author: Meyer W, Mitchell TG, Freedman EZ, Vilgalys R.
    Journal: J Clin Microbiol; 1993 Sep; 31(9):2274-80. PubMed ID: 8408543.
    Abstract:
    In conventional DNA fingerprinting, hypervariable and repetitive sequences (minisatellite or microsatellite DNA) are detected with hybridization probes. As demonstrated here, these probes can be used as single primers in the polymerase chain reaction (PCR) to generate individual fingerprints. Several conventional DNA fingerprinting probes were used to prime the PCR, yielding distinctive, hypervariable multifragment profiles for different strains of Cryptococcus neoformans. PCR fingerprinting with the oligonucleotide primers (GTG)5, (GACA)4, and the phage M13 core sequence (GAGGGTGGXGGXTCT), but not with (CA)8 or (CT)8, generated DNA polymorphisms with all 42 strains of C. neoformans investigated. PCR fingerprints produced by priming with (GTG)5, (GACA)4, or the M13 core sequence differentiated the two varieties of C. neoformans, C. neoformans var. neoformans (serotypes A and D) and C. neoformans var. gattii (serotypes B and C). Furthermore, strains of serotypes A, D, and B or C could be distinguished from each other by specific PCR fingerprint patterns. These primers, which also successfully amplified hypervariable DNA segments from other species, provide a convenient method of identification at the species or individual level. Amplification of polymorphic DNA patterns by PCR with these primers offers several advantages over classical DNA fingerprinting techniques, appears to be more reliable than other PCR-based methods for detecting polymorphic DNA, such as analysis of random-amplified polymorphic DNA, and should be applicable to many other organisms.
    [Abstract] [Full Text] [Related] [New Search]