These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Differential expression and subcellular localization of protein kinase C alpha, beta, gamma, delta, and epsilon isoforms in SH-SY5Y neuroblastoma cells: modifications during differentiation. Author: Leli U, Shea TB, Cataldo A, Hauser G, Grynspan F, Beermann ML, Liepkalns VA, Nixon RA, Parker PJ. Journal: J Neurochem; 1993 Jan; 60(1):289-98. PubMed ID: 8417148. Abstract: A decrease in protein kinase C activity caused either by treatment with inhibitors, such as staurosporine or H-7, or by prolonged exposure to phorbol diesters has been proposed to be involved in the early events of SH-SY5Y neuroblastoma cell differentiation. Because eight distinct isoforms of protein kinase C with discrete subcellular and tissue distributions have been described, we determined which isoforms are present in SH-SY5Y cells and studied their modifications during differentiation. The alpha, beta 1, delta, and epsilon isoforms were present in SH-SY5Y cells, as well as in rat brain. Protein kinase C-alpha and -beta 1 were the most abundant isoforms in SH-SY5Y cells, and immunoreactive protein kinase C-delta and -epsilon were present in much smaller amounts than in rat brain. Subcellular fractionation and immunocytochemistry demonstrated that all four isoforms are distributed bimodally in the cytoplasm and the membranes. Immunocytochemical analysis showed that the alpha isoform is associated predominantly with the plasma membrane and the processes extended during treatment with 12-tetradecanoyl-13-acetyl-beta-phorbol or staurosporine, and that protein kinase C-epsilon is predominantly membrane-bound. Its localization did not change during differentiation. Western blots of total SH-SY5Y cell extracts and of subcellular fractions probed with isoform-specific polyclonal antibodies showed that when SH-SY5Y cells acquired a morphologically differentiated phenotype, protein kinase C-alpha and -epsilon decreased, and protein kinase C-beta 1 did not change. These data suggest distinct roles for the different protein kinase C isoforms during neuronal differentiation, as well as possible involvement of protein kinase alpha and epsilon in neuritogenesis.[Abstract] [Full Text] [Related] [New Search]