These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Dehydration-induced lamellar-to-hexagonal-II phase transitions in DOPE/DOPC mixtures. Author: Webb MS, Hui SW, Steponkus PL. Journal: Biochim Biophys Acta; 1993 Jan 18; 1145(1):93-104. PubMed ID: 8422415. Abstract: Plasma membranes of protoplasts isolated from non-acclimated rye plants undergo a transition from the bilayer to the inverted hexagonal (HII) phase during freeze-induced dehydration at -10 degrees C. It has been suggested (Bryant, G. and Wolfe, J. (1989) Eur. Biophys. J. 16, 369-372) that the differential hydration of various membrane components may induce fluid-fluid demixing of highly hydrated (e.g., PC) from poorly hydrated (PE) components during dehydration. This could yield a PE-enriched domain more prone to form the HII phase. We have examined the lyotropic phase behavior of mixtures of DOPE and DOPC at 20 degrees C by freeze-fracture electron microscopy, differential scanning calorimetry, and X-ray diffraction. HII phase formation was favored by higher proportions of DOPE and lower water contents. Mixtures of 1:1 and 1:3 DOPE/DOPC had a hydration-dependent appearance of two L alpha phases at water contents just above those at which the HII phase occurred. The hydration-dependence of the lamellar repeat spacings suggested that the DOPE-enriched domains preferentially underwent the L alpha-to-HII phase transition. Mixtures of 3:1 DOPE/DOPC did not separate into two L alpha phases during dehydration. These data suggest that the differential hydration characteristics of various membrane components may induce their lateral fluid-fluid demixing during dehydration.[Abstract] [Full Text] [Related] [New Search]