These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Presence of chondroid bone on rat mandibular condylar cartilage. An immunohistochemical study.
    Author: Mizoguchi I, Nakamura M, Takahashi I, Sasano Y, Kagayama M, Mitani H.
    Journal: Anat Embryol (Berl); 1993 Jan; 187(1):9-15. PubMed ID: 8430903.
    Abstract:
    Immunohistochemical techniques were used to examine the locations of type I and type II collagens in the the most anterior and the posterosuperior regions of the mandibular condylar cartilages of young and adult rats. Large ovoid and polygonal cells, which were morphologically different from any of the neighboring cells, e.g., mature or hypertrophied chondrocytes, osteoblasts, or fibroblasts, were observed at the most anterior margin of the young and adult condylar cartilages. In the extracellular matrix (ECM) of this area, an eosinophilic staining pattern similar to that in bone matrix was observed, while the peripheral ECM showed basophilic staining and very weak reactivity to Alcian blue. Immunohistochemical examination showed that the ECM was stained heavily and diffusely for type I collagen, while a staining for type II collagen was faint and limited to the peripheral ECM. Two different staining patterns for type II collagen could be recognized in the ECM: one pattern revealed a very faint and diffuse reaction while the other showed a wak rim-like reaction. These staining patterns were markedly different from those in the cartilaginous cell layer in the posterosuperior area of the condylar secondary cartilage, which showed faint staining for type I collagen and a much more intense staining for type II collagen. These observations reveal the presence of chondroid bone, a tissue intermediate between bone and cartilage tissues, in the mandibular condylar cartilage, and suggest the possibility of osteogenic transdifferentiation of mature chondrocytes.
    [Abstract] [Full Text] [Related] [New Search]