These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: In vitro antimicrobial activity of benzoxazinorifamycin, KRM-1648, against Mycobacterium avium complex, determined by the radiometric method.
    Author: Tomioka H, Saito H, Fujii K, Sato K, Hidaka T.
    Journal: Antimicrob Agents Chemother; 1993 Jan; 37(1):67-70. PubMed ID: 8431020.
    Abstract:
    MICs of a newly developed benzoxazinorifamycin derivative, KRM-1648, for Mycobacterium avium complex (MAC) were determined by the BACTEC 460 TB system and compared with those of other known antimicrobial agents. The radiometric method gave a fast, accurate, and reproducible MIC for each antimicrobial agent. MICs of KRM-1648 for 30 strains of MAC (10 strains each of M. avium isolated from AIDS and non-AIDS patients and of Mycobacterium intracellulare isolated from non-AIDS patients) were measured. The MICs, ranging from 0.004 to 0.0625 microgram/ml, were the lowest of all tested drugs, including rifampin, rifabutin, streptomycin, kanamycin, isoniazid, ethambutol, ofloxacin, ciprofloxacin, sparfloxacin, and clarithromycin. The MICs were 2 to 512 and 1 to 32 times lower than those of rifampin and rifabutin, respectively. With rifampin and ethambutol, there were some differences between the MICs for M. avium isolated from AIDS patients (American) and those for M. avium from non-AIDS patients (Japanese). Moreover, appreciable differences between the MICs of some drugs against M. avium and M. intracellulare isolated from non-AIDS patients were found. Many strains of M. avium were more susceptible to ofloxacin than M. intracellulare, but, conversely, M. avium was more resistant to rifampin, streptomycin, ethambutol, and clarithromycin than M. intracellulare.
    [Abstract] [Full Text] [Related] [New Search]