These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Inhibition of phorbol ester-induced T cell proliferation by bryostatin is associated with rapid degradation of protein kinase C. Author: Isakov N, Galron D, Mustelin T, Pettit GR, Altman A. Journal: J Immunol; 1993 Feb 15; 150(4):1195-204. PubMed ID: 8432975. Abstract: The bryostatins (Bryo) represent a group of immunomodulators that counteract the tumor-promoting effects of PMA. In contrast to the mitogenic effect of PMA on human peripheral blood T lymphocytes, Bryo was nonmitogenic and, furthermore, it inhibited PMA-induced T cell proliferation in a dose-dependent manner when added up to 2 days after PMA. Because both Bryo and PMA bind to, and activate, protein kinase C (PKC), we compared their effects on PKC expression and activity in human PBL or leukemic T cells (Jurkat). After treatment for 5 to 60 min, both Bryo and PMA were found to: a) activate PKC in vitro with similar dose-response curves; b) induce a nearly complete cytosol-to-membrane translocation of enzymatically active, Ca(2+)-dependent PKC and of distinct immunoreactive PKC isoforms in intact PBL; and c) stimulate similar patterns of protein phosphorylation. After a longer, 20-h treatment with PMA (20 nM), a considerable portion of PKC was still membrane-associated, and the total amount of immunoreactive PKC was not reduced considerably. In contrast, Bryo induced a marked loss of cellular immunoreactive PKC, including PKC-alpha and -beta. These results were paralleled by measurements of total cytosol- or membrane-associated PKC enzymatic activity. Thus, substantial PKC activity was associated with the particulate fraction of PMA-, but not Bryo-stimulated PBL. Furthermore, inhibition of PMA-induced T cell proliferation by Bryo also correlated with a reduction in the amount of cytosolic and membrane-bound immunoreactive PKC and enzymatic activity, demonstrating the dominance of Bryo over PMA. We propose that Bryo inhibits PMA-induced T cell proliferation by causing rapid degradation of PKC, reflecting a requirement of persistent PKC stimulation (lasting approximately 48 h) for the activation of human T cells and progression through the cell cycle.[Abstract] [Full Text] [Related] [New Search]