These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Chronic motor cortex stimulation in patients with thalamic pain. Author: Tsubokawa T, Katayama Y, Yamamoto T, Hirayama T, Koyama S. Journal: J Neurosurg; 1993 Mar; 78(3):393-401. PubMed ID: 8433140. Abstract: Analysis of the authors' experience over the last 10 years has indicated that excellent pain control has rarely been obtained by thalamic relay nucleus stimulation in patients with thalamic pain. In the present study, 11 patients with thalamic pain were treated by chronic stimulation of the precentral gyrus. In eight patients (73%), the stimulation system was internalized since excellent pain control was achieved during a 1-week test period of precentral gyrus stimulation. In contrast, no clear effect was noted or the original pain was even exacerbated by postcentral gyrus stimulation. The effect of precentral stimulation was unchanged in five patients (45%) for follow-up periods of more than 2 years. In the remaining three patients, the effect decreased gradually over several months. This outcome was significantly better than that obtained in an earlier series tested by the authors with thalamic relay nucleus stimulation (p < 0.05). The pain inhibition usually occurred at intensities below the threshold for production of muscle contraction (pulse duration 0.1 to 0.5 msec, intensity 3 to 8 V). When good pain inhibition was achieved, the patients reported a slight tingling or mild vibration sensation during stimulation projected in the same area of distribution as their pain. The authors discuss the possibility that, in deafferentation pain, sensory neurons below the level of deafferentation cannot exert their normal inhibitory influences toward deafferented nociceptive neurons because of the development of aberrant connections. Thus, while stimulation of the first- to third-order sensory neurons at the level of the thalamic relay nucleus or below cannot bring about good pain inhibition in patients with thalamic pain, activation of hypothetical fourth-order sensory neurons through precentral stimulation may be able to inhibit deafferented nociceptive neurons within the cortex. None of the patients developed either observable or electroencephalographic seizure activity.[Abstract] [Full Text] [Related] [New Search]