These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Molecular mechanism of the regulation of expression of plasmid-encoded mouse bacteremia (mba) genes in Salmonella serovar Choleraesuis.
    Author: Matsui H, Abe A, Suzuki S, Kijima M, Tamura Y, Nakamura M, Kawahara K, Danbara H.
    Journal: Mol Gen Genet; 1993 Jan; 236(2-3):219-26. PubMed ID: 8437568.
    Abstract:
    The regulation of mouse bacteremia genes (mba genes) encoded by a 6.4 kb region on the 50 kb virulence plasmid (pKDSC50) of Salmonella serovar Choleraesuis was analyzed. The genes mba1, mba2, mba3, and mba4, are arranged in this order, and form a cluster located in the 6.4 kb mba region. We prepared four antibodies, each specific for an individual Mba protein, using synthetic peptides as antigens. Their amino acid sequences were deduced from the DNA sequence of the corresponding mba genes. Each Mba peptide antiserum was able to recognize the corresponding Mba protein produced by Escherichia coli carrying a recombinant plasmid containing individual mba genes. When the recombinant plasmid contained all four mba genes (pMKD601), three Mba proteins (Mba2, Mba3, and Mba4) were identified by Western blotting analysis using Mba antisera. These proteins could not be detected when the recombinant plasmid lacked mba1 (pMKD201). Three species of mRNA for mba2, mba3, and mba4 with different chain length were detected from pMKD601 by Northern blot hybridization, and two start sites were identified by primer extension assay. Gel mobility shift assays demonstrated that Mba1 specifically bound to a fragment containing the start sites of mRNAs. The amino acid sequence of Mba1 had significant homology to the LysR family of DNA binding proteins, possessing a characteristic helix-turn-helix DNA binding motif. The present study provides clear evidence to show that the Mba1 protein binds to the promoter region of mba2, and positively regulates the expression of mba2, mba3, and mba4 genes.
    [Abstract] [Full Text] [Related] [New Search]