These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Squid glutathione S-transferase. Relationships with other glutathione S-transferases and S-crystallins of cephalopods.
    Author: Tomarev SI, Zinovieva RD, Guo K, Piatigorsky J.
    Journal: J Biol Chem; 1993 Feb 25; 268(6):4534-42. PubMed ID: 8440736.
    Abstract:
    Glutathione S-transferase (GST, EC 2.5.1.18) was purified from the digestive gland of the squid Ommastrephes sloani pacificus. It had high enzymatic activity for the 1-chloro-2,4-dinitrobenzene substrate and was composed of a major and a minor polypeptide band, both with molecular masses near 25 kDa on SDS-polyacrylamide gels. GST cDNA clones were derived from the digestive gland mRNA. The deduced GSTs of the longest cDNAs (pGST5 and pGST11) containing the entire coding sequence have a molecular mass near 23 kDa. Sequence comparisons showed that the squid GST is 42-44% identical to both squid and octopus S-crystallins (the major proteins of the lens), 32-34% identical to class pi and 29-32% identical to class alpha GSTs of vertebrates, and 19-23% identical to other GSTs of vertebrates and insects. Northern blot hybridization revealed that GST mRNAs were much more abundant in the digestive gland than in the testis, mantle, or lens. Analysis of a squid GST gene indicated that it has an exon-intron structure similar to that of the vertebrate class pi GST gene. An apparently novel repetitive element was identified in the 5'-flanking sequence of the squid GST gene. Our results suggest that multiple duplications of an ancestral GST gene gave rise to a family of enzymatically inactive crystallins specialized for lens refraction and one (or two) active GST enzyme expressed preferentially, but not exclusively, in the digestive gland in squids. This differs from the innovation of refractive function from a metabolic enzyme by increased expression in the lens with minimal or no gene duplication, as occurred among the enzyme-crystallins of vertebrates.
    [Abstract] [Full Text] [Related] [New Search]