These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Cardiac output and renal blood flow in glycerol-induced acute renal failure in the rat. Author: Hsu CH, Kurtz TW, Waldinger TP. Journal: Circ Res; 1977 Feb; 40(2):178-82. PubMed ID: 844143. Abstract: Cardiac output (CO) and renal blood flow (RBF) were simultaneously evaluated by the microsphere method in water-drinking and chronic saline-drinking rats at 3, 12 and 24 hours after induction of acute renal failure by glycerol injection. Threee hours after glycerol injection CO and RBF decreased to 36% and 20% of the respective controls in water-drinking rats and to 41% and 24% of the controls in saline-drinking rats. Renal vascular resistance (RVR) increased significantly in both groups at this time. Isoncotic plasma expansion (3% of body weight) restored the RBF and RVR to normal in water-drinking rats 3 hours post-glycerol injection, althought CO increased to only 70% of the control. Twelve hours after glycerol injection, CO and RBF returned to normal in saline-drinking rats, whereas they remained lower than controls in water-drinking rats. Twenty-four hours post-glycerol injection, when acute renal failure was evident as indicated by blood urea nitrogen (BUN) values of 116.9 and 63.8 mg/100 ml in water- and saline-drinking rats, respectively, CO and RBF returned to normal, except that the CO of of water-drinking rats was slightly higher than control. Thus, we conclude that decreased CO is an important determinant of the early decrease in renal perfusion in glycerol-induced acute renal failure. Furthermore, the observed earlier return of CO and RBF to normal in saline-drinking rats may be partly responsible for reproducing the severity of acute renal failure.[Abstract] [Full Text] [Related] [New Search]