These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Effect of the B ring and the C-7 substituent on the kinetics of colchicinoid-tubulin associations.
    Author: Pyles EA, Hastie SB.
    Journal: Biochemistry; 1993 Mar 09; 32(9):2329-36. PubMed ID: 8443174.
    Abstract:
    The kinetics of four B-ring derivatives of colchicine binding to tubulin has been examined quantitatively. The bindings of deacetamidocolchicine, deacetylcolchicine, demecolcine, and N-methyl-demecolcine to tubulin were biphasic processes. The association rate constants were determined as a function of temperature, and the thermodynamic parameters for the transition states of the fast phase were calculated. The kinetic parameters for the formation of the deacetylcolchicine-tubulin, demecolcine-tubulin, and N-methyldemecolcine-tubulin complexes were very similar to each other, but different from the parameters for the colchicine-tubulin association. In particular, the global activation enthalpies for the formation of the three aminocolchicinoid-tubulin complexes were 3-5 kcal/mol greater than the global activation enthalpy of colchicine binding to tubulin. These results indicate that electronic rather than steric properties of the B-ring substituent are of greater importance in the activation enthalpy of colchicinoids binding to tubulin. In contrast, the global activation enthalpy for deacetamidocolchicine, which lacks a substituent on the C-7 carbon, binding to tubulin was virtually identical to the global activation enthalpy previously found for the colchicine analog that lacks the B ring, 2-methoxy-5-(2,3,4-trimethoxyphenyl)tropone, binding to tubulin (Bane, S., Puett, D., Macdonald, T. L., & Williams, R. C., Jr. (1984) J. Biol. Chem. 259, 7391-7398). This result demonstrates that the carbons of the B ring are not involved in the transition state for the formation of colchicinoid-tubulin complexes. The first-order dissociation rate constants of the colchicinoid-tubulin complexes were determined at 37 degrees C. The dissociation profiles of the colchicinoid-tubulin complexes also consisted of two phases.(ABSTRACT TRUNCATED AT 250 WORDS)
    [Abstract] [Full Text] [Related] [New Search]