These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Isolation and characterization of AMP deaminase from mammalian (rabbit) myocardium. Author: Thakkar JK, Janero DR, Yarwood C, Sharif H, Hreniuk D. Journal: Biochem J; 1993 Mar 01; 290 ( Pt 2)(Pt 2):335-41. PubMed ID: 8452518. Abstract: AMP deaminase (AMP aminohydrolase, EC 3.5.4.6) is a ubiquitous enzyme in eukaryotes, which may play a role in ATP catabolism during myocardial ischaemia. We report isolation of AMP deaminase from rabbit myocardium with a 19% recovery and a 650-fold enrichment, using a newly devised protocol involving sequential cation-exchange, gel-permeation and affinity chromatographies. The cardiac AMP deaminase preparation described was electrophoretically and chromatographically homogeneous and contained one unique N-terminal residue (leucine). The isolated enzyme was sensitive to various cations (K+, Mg2+, Ca2+). The pH optimum of purified cardiac AMP deaminase was 6.8, its pI was 6.5, and it displayed substrate-specificity toward 5'-AMP. The subunit molecular mass of rabbit heart AMP deaminase on SDS/PAGE (81 kDa) and the holoenzyme molecular mass as estimated by non-denaturing size-exclusion h.p.l.c. (330 kDa) indicated that the native enzyme was a tetramer. Cardiac AMP deaminase displayed a sigmoidal substrate-saturation curve in the presence of 100 mM KCl. Apparent Michaelis constants were a Km of 5.8 mM AMP and a Vmax. of 11.1 mumol/min per mg of protein. ATP and ADP were positive allosteric effectors of cardiac AMP deaminase: the apparent Km was decreased to 1.7 mM by 1.0 mM ATP. The enzyme was inhibited by GTP, coformycin, coformycin 5'-phosphate, palmitoyl-CoA, inorganic phosphate compounds, and the metal chelator o-phenanthroline. No inhibition either by product nucleotide (IMP) or by nicotinamide nucleotides was detected when these agents were examined at concentrations up to 2.5 mM. We conclude that this enzyme preparation offers a means by which the kinetic mechanism and regulation of mammalian cardiac AMP deaminase may be directly investigated.[Abstract] [Full Text] [Related] [New Search]