These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Localization of NADPH diaphorase in neurons of the rostral ventral medulla: possible role of nitric oxide in central autonomic regulation and oxygen chemoreception.
    Author: Iadecola C, Faris PL, Hartman BK, Xu X.
    Journal: Brain Res; 1993 Feb 12; 603(1):173-9. PubMed ID: 8453473.
    Abstract:
    We studied whether neurons containing nitric oxide synthase (NOS) are localized to the rostral ventrolateral medulla (RVM) and, if so, whether they are distinct from the adrenergic neurons of the C1 group. NOS-containing neurons and/or C1 neurons were visualized using NADPH diaphorase histochemistry and phenylethanolamine N-methyltransferase (PNMT) immunohistochemistry, respectively. A column of NADPH diaphorase-positive neurons, extending 2 mm in the rostrocaudal plane, was observed lateral to the inferior olive and medial to the C1 neurons. Double labelling studies showed that NADPH diaphorase-positive neurons were not immunoreactive for PNMT, indicating that the two enzymes were localized in the different cells. Furthermore, only a small fraction of NADPH diaphorase neurons were retrogradely labelled after injections of fluorogold into the thoracic cord. We conclude that the RVM contains a well-defined group of neurons endowed with NOS that are distinct from the adrenergic neurons of the C1 group and have only limited monosynaptic projections to the spinal cord. Since the RVM is involved in the control of arterial pressure and in oxygen-conserving reflexes, the findings raise the possibility that nitric oxide participates in central autonomic regulation and oxygen chemoreception.
    [Abstract] [Full Text] [Related] [New Search]