These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Oxygen binding by single crystals of hemoglobin. Author: Rivetti C, Mozzarelli A, Rossi GL, Henry ER, Eaton WA. Journal: Biochemistry; 1993 Mar 23; 32(11):2888-906. PubMed ID: 8457555. Abstract: Reversible oxygen binding curves for single crystals of hemoglobin in the T quaternary structure have been measured using microspectrophotometry. Saturations were determined from complete visible spectra measured with light linearly polarized parallel to the a and c crystal axes. Striking differences were observed between the binding properties of hemoglobin in the crystal and those of hemoglobin in solution. Oxygen binding to the crystal is effectively noncooperative, the Bohr effect is absent, and there is no effect of chloride ion. Also, the oxygen affinity is lower than that of the T quaternary structure in solution. The absence of the Bohr effect supports Perutz's hypothesis on the key role of the salt bridges, which are known from X-ray crystallography to remain intact upon oxygenation. The low affinity and absence of the Bohr effect can be explained by a generalization of the MWC-PSK model (Monod, Wyman, & Changeux, 1965; Perutz, 1970; Szabo & Karplus, 1972) in which both high- and low-affinity tertiary conformations, with broken and unbroken salt bridges, respectively, are populated in the T quaternary structure. Because the alpha and beta hemes make different projections onto the two crystal axes, separate binding curves for the alpha and beta subunits could be calculated from the two measured binding curves. The approximately 5-fold difference between the oxygen affinities of the alpha and beta subunits is much smaller than that predicted from the crystallographic study of Dodson, Liddington, and co-workers, which suggested that oxygen binds only to the alpha hemes.(ABSTRACT TRUNCATED AT 250 WORDS)[Abstract] [Full Text] [Related] [New Search]