These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: The intensitive DL of tones: dependence of signal/masker ratio on tone level and on spectrum of added noise.
    Author: Greenwood DD.
    Journal: Hear Res; 1993 Feb; 65(1-2):1-39. PubMed ID: 8458743.
    Abstract:
    In Greenwood [J. Acoust. Soc. Am. 33, 484-502 (1961a)] the ratio of masked signal threshold to masker level (S/M) decreased about 4 dB at a masker level of about 50 dB SL, the 'transition' level, when noise bands were subcritical but not when supercritical. Schlauch et al. [J. Acoust. Soc. Am. 71, S73 (1982)] report a related result. A pilot study [Greenwood, Harvard Psychoacoustic Lab. Status Report 37, 8-9 (1961)] in which pure tones masked identical tones in-phase showed a larger change in S/M. Detailed tone-tone growth-of-masking curves from over a dozen subjects in 1967-69, and in 1960, are reported here. A transition in slope, of variable abruptness, often begins to occur at about 50 dB SL, dropping S/M ratio by 6 to 8 dB or more [Rabinowitz et al., J. Acoust. Soc. Am. 35, 1053 (1976)]; the curves sometimes possess two segments, sometimes are simply convex. All have overall slopes less than 1.0, known also as the 'near miss'. Consistent with other results [Zwicker, Acustica 6, 365-396 (1956); Viemeister, J. Acoust. Soc. Am. 51, 1265-1296 (1972); Moore and Raab, J. Acoust. Soc. Am. 55, 1049-1060 (1974)], addition of low-level wide-band and high-pass noise was found to counteract the change in S/M, i.e., to raise the high-level section of the growth-of-masking curve. However, the ability of narrow 'band-pass' noise to exert this effect was greatest when added at a frequency ratio (band/masking-tone) of 1.3 to 1.5, which seems more closely to link the effects of added noise to the effects of increasing a masking band from sub- to supercritical width (above). Interpretation of the decrease in DL with level begins by noting that the 'transition' level correlates approximately with the level at which a primary unit population excited by a given pure tone begins rapidly to expand basally. Underlying this, the basalward shift of a tone's displacement envelope peak accelerates at about the same level [Rhode, J. Acoust. Soc. Am. 49, 1218-1231 (1971); Sellick et al., J. Acoust. Soc. Am. 72, 131-141 (1982)].(ABSTRACT TRUNCATED AT 400 WORDS)
    [Abstract] [Full Text] [Related] [New Search]