These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Interrelations between transiently evoked otoacoustic emissions, spontaneous otoacoustic emissions and acoustic distortion products in normally hearing subjects.
    Author: Moulin A, Collet L, Veuillet E, Morgon A.
    Journal: Hear Res; 1993 Feb; 65(1-2):216-33. PubMed ID: 8458753.
    Abstract:
    Active cochlear mechanisms and especially outer hair cells seem to be involved in oto-acoustic emissions (OAEs) genesis. This study sought to investigate basic characteristics of spontaneous otoacoustic emissions (SOAEs), click-evoked otoacoustic emissions (TOAEs) and interrelations between SOAEs, TOAEs and 2f1-f2 and 2f2-f1 distortion product OAEs (DPOAEs) in 135 normally hearing subjects. A gender effect was shown on TOAEs and DPOAEs amplitude, and is attributed to the higher incidence of SOAEs in women (58%) than in men (22%). Moreover, SOAEs presence seems to mask the age effect found, especially at high frequency components, on TOAEs amplitude. A general influence of SOAEs on TOAEs and DPOAEs is shown, especially at frequencies ranging from 1 kHz to 3 kHz, collecting more than 66% of the SOAEs peaks recorded. Lastly, correlations between TOAEs frequency band amplitude and 2f1-f2 DPOAEs amplitude, shows frequency specificity, at least at low frequencies (i.e., from 0.5 to 2 kHz) in agreement with previous works suggesting that the 2f1-f2 DPOAEs generation site is at the geometric mean of the primaries. The same correlations calculated with 2f2-f1 DPOAEs amplitude show frequency specificity at low frequencies i.e., at 800 Hz and 1600 Hz. 2f2-f1 DPOAEs in humans are shown to be generated near the 2f2-f1 frequency region on the cochlear partition.
    [Abstract] [Full Text] [Related] [New Search]