These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Modulation of cytotoxicity and differentiation-inducing potential of arabinofuranosylcytosine in myeloid leukemia cells by hematopoietic cytokines.
    Author: Brach MA, Mertelsmann RH, Herrmann F.
    Journal: Cancer Invest; 1993; 11(2):198-211. PubMed ID: 8462021.
    Abstract:
    Hematopoietic growth factors may be useful in improving the clinical effectiveness of arabinofuranosylcytosine (ara-C). In vitro studies have indicated that interleukin 3(IL-3) and, to a lesser extent, granulocyte-macrophage colony-stimulating factor (GM-CSF), but not G-CSF or M-CSF, may be capable of specifically augmenting the ability of ara-C to kill leukemic myeloid cells by pharmacological and cytokinetic mechanisms including increase of intracellular ara-CTP/dCTP pool ratios and enhanced ara-C DNA incorporation in leukemic blast cells, decrease of IC 90 of ara-C for leukemic colony-forming cells (CFC) as compared with normal CFC growth, and recruitment of quiescent leukemic cells into the cell cycle. In contrast, the combination of ara-C with M-CSF or with the leukemia inhibitory factor (LIF) appears to be useful in overcoming the block in differentiation of leukemic blast, while the effects of GM-CSF and IL-3 on ara-C-induced differentiation appear limited. The combined treatment of human myeloid leukemia cells by ara-C and LIF is associated with down-regulation of c-myc gene expression, transcriptional activation of jun/fos gene expression, and features of functional differentiation (e.g., the capability to reduce nitroblue tetrazolium, to express lysozyme, or to display differentiation-related surface receptors including C3bi and the c-fms protein). On the basis of these in vitro studies first clinical trials are underway that are examining the efficacy of ara-C combinations with these molecules for the treatment of myeloid disorders.
    [Abstract] [Full Text] [Related] [New Search]