These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Sarcoplasmic reticulum calcium mobilization in right ventricular pressure-overload hypertrophy in the ferret: relationships to diastolic dysfunction and a negative treppe.
    Author: Gwathmey JK, Morgan JP.
    Journal: Pflugers Arch; 1993 Mar; 422(6):599-608. PubMed ID: 8469611.
    Abstract:
    In a model of right-ventricular pressure-overload hypertrophy (POH) in the ferret, action potential duration (to 90% repolarization) was found to be significantly longer (228 +/- 11 vs 314 +/- 12 ms) with no change in amplitude (85 +/- 3 vs 85 +/- 2 mV) or resting membrane potential (-79 +/- 1.5 vs -79 +/- 1 mV) for control and POH, respectively. Peak sarcoplasmic reticulum Ca2+ release (expressed as the logarithm of the fractional luminescence, -4.2 +/- 0.1 vs -4.4 +/- 0.3) and resting calcium concentrations (-5.5 +/- 0.1 vs -5.7 +/- 0.1) were not different between the two groups (control vs POH respectively). Muscles from control and POH animals demonstrated a positive force/interval relationship in the presence of physiological extracellular [Ca2+]. However, unlike muscles from control animals, muscles from animals with POH subjected to increasing frequencies of contraction in the presence of increased extracellular [Ca2+] demonstrated further impairment of diastolic relaxation and a negative treppe. Exposure of muscles from POH animals to isoproterenol returned the slowed Ca2+ uptake by the sarcoplasmic reticulum as detected with aequorin to control values, although the relaxation phase of the isometric twitch remained prolonged compared to non-hypertrophied muscles. Exposure to milrinone also abbreviated the time course of the intracellular Ca2+ transient, but did not return it to that seen in normal myocardium. The exposure of non-hypertrophied isolated muscles to caffeine resulted in similar prolongation of the isometric twitch duration to that seen in hypertrophied myocardium. Results of these experiments suggest that impaired muscle relaxation in POH reflects changes at the level of the myofilaments. Thus, although slowed intracellular calcium mobilization contributes to diastolic relaxation abnormalities, it can not be the sole factor responsible for the slowed relaxation as has been suggested.
    [Abstract] [Full Text] [Related] [New Search]