These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Role of the C-terminal domain of pulmonary surfactant protein A in binding to alveolar type II cells and regulation of phospholipid secretion.
    Author: Murata Y, Kuroki Y, Akino T.
    Journal: Biochem J; 1993 Apr 01; 291 ( Pt 1)(Pt 1):71-6. PubMed ID: 8471056.
    Abstract:
    Surfactant protein A (SP-A), with a reduced denatured molecular mass of 26-38 kDa, is characterized by a collagen-like sequence in the N-terminal half of the protein. This protein forms an oligomeric structure which is dependent upon this collagenous domain. SP-A has been demonstrated to function as an inhibitor of phospholipid secretion by primary cultures of alveolar type II cells via a cell surface receptor for the protein. However, the receptor-binding domain of SP-A has not been identified. The purpose of the present study was to investigate the role of the C-terminal domain of SP-A in binding to type II cells and regulation of phospholipid secretion. A monoclonal antibody to human SP-A, whose epitope was localized at the C-terminal domain of the protein, abolished the inhibitory activity of human SP-A on lipid secretion by type II cells, and attenuated the ability of human SP-A to compete with 125I-(rat SP-A) for receptor binding. SP-A was then digested with collagenase and the collagenase-resistant fragment (CRF), which is the C-terminal domain of SP-A (thus lacking the N-terminal domain), was isolated. Gel filtration chromatography revealed that CRF exists as a monomer in solution containing Ca2+. CRF had the ability to inhibit phospholipid secretion, although at a higher concentration than for SP-A, and was also able to compete with 125I-(rat SP-A) for binding to type II cells. A direct binding study showed that CRF bound to type II cells in a concentration-dependent manner. The present study demonstrates that the non-collagenous, C-terminal, domain of SP-A is responsible for the protein's inhibitory effect on lipid secretion and its binding to type II cells.
    [Abstract] [Full Text] [Related] [New Search]