These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Function of intracellular [Ca2+]i in exocytosis and transbilayer movement in human platelets surface-labeled with the fluorescent probe 1-(4-trimethylammonio)phenyl)-6-phenyl-1,3,5-hexatriene. Author: Heemskerk JW, Feijge MA, Andree HA, Sage SO. Journal: Biochim Biophys Acta; 1993 Apr 22; 1147(2):194-204. PubMed ID: 8476913. Abstract: Ellipsometry indicated that 1-(4-(trimethylammonio)phenyl-6-phenylhexa-1,3,5-triene (TMA-DPH) bound to platelets in a reversible and saturable way. Accordingly, the fluorescence intensity (F) of a suspension of TMA-DPH-labeled platelets was described as a quantity, determined by the amount of TMA-DPH bound to the platelet surface. Most platelet activators elevated F to a degree that correlate well with the secretion of serotonin evoked by these activators. The increase in F levels reflected the increase in outer membrane surface area following exocytosis. However, activators that evoked prolonged (> 2.5 min) and strong (> 600 nM) elevations of cytosolic [Ca2+]i increased F to levels that were much higher than expected from the maximal increase in surface area due to exocytosis. This high increase in F was caused by inward transbilayer movement of TMA-DPH over the plasma membrane and the subsequent labeling of cytosolic membrane sides. The kinetics of exocytosis and changes in cytosolic [Ca2+]i were studied by stopped-flow mixing of platelets with agonist. Thrombin-induced exocytosis had a delay of only 3 s, which was shortened when external CaCl2 or ADP was present. This correlated well with a faster rise in [Ca2+]i in the presence of CaCl2 or ADP, indicating that exocytosis was linked in time to elevation of [Ca2+]i. By itself, ADP was unable to evoke exocytosis and it elicited a [Ca2+]i transient of much shorter duration than thrombin, but with similar maximum. We concluded that both exocytosis and transbilayer movement were associated with elevation of [Ca2+]i: exocytosis required a moderate, relatively prolonged rise and transbilayer movement was accompanied by a stronger rise of even longer duration. Influx of external Ca2+ was essential for transbilayer movement, but not for exocytosis.[Abstract] [Full Text] [Related] [New Search]