These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Hormonal control of sex differences in the brain, behavior and accessory sex structures of whiptail lizards (Cnemidophorus species). Author: Wade J, Huang JM, Crews D. Journal: J Neuroendocrinol; 1993 Feb; 5(1):81-93. PubMed ID: 8485546. Abstract: The effects of steroid hormones on sexual dimorphisms in the brain, behavior and accessory sex structures were investigated in two species of whiptail lizards. The studies were conducted both in adults and hatchlings of a sexually reproducing species (Cnemidophorus inornatus) and an all-female species (C. uniparens) which displays 'sexual' behaviors typical of males and females. Adults were gonadectomized and approximately 3 months later given either a Silastic capsule filled with sex steroid or an empty capsule. Young animals of both species were left intact and given a capsule on the day of hatching. An additional group of C. uniparens was ovariectomized on the day of hatching. Following treatment, measures of oviduct (estrogen-dependent), renal sex segment (androgen-dependent) and wolffian duct (androgen-dependent) hypertrophy were taken in some experiments. Animals were also tested for sexual behavior in some of the studies. The volumes of the anterior hypothalamus-preoptic area and ventromedial hypothalamus were measured in each individual. Estrogen, testosterone and dihydrotestosterone stimulated peripheral structures at both time periods in both sexes and species. The hormones also stimulated courtship and copulatory behaviors in many of the adult animals. However, testosterone in the anterior hypothalamus-preoptic area of male C. inornatus was the only treatment which produced parallel effects on the volume of a brain area and the behaviors which it controls. These data add whiptail lizards to the list of species in which steroid hormones affect the volume of brain regions in adulthood, but suggest that such changes in morphology are not necessarily predictive of functional differences.[Abstract] [Full Text] [Related] [New Search]