These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Small-conductance Ca(2+)-activated K+ channels in bovine chromaffin cells.
    Author: Artalejo AR, García AG, Neher E.
    Journal: Pflugers Arch; 1993 Apr; 423(1-2):97-103. PubMed ID: 8488096.
    Abstract:
    Simultaneous whole-cell patch-clamp and fura-2 fluorescence [Ca2+]i measurements were used to characterize Ca(2+)-activated K+ currents in cultured bovine chromaffin cells. Extracellular application of histamine (10 microM) induced a rise of [Ca2+]i concomitantly with an outward current at holding potentials positive to -80 mV. The activation of the current reflected an increase in conductance, which did not depend on membrane potential in the range -80 mV to -40 mV. Increasing the extracellular K+ concentration to 20 mM at the holding potential of -78 mV was associated with inwardly directed currents during the [Ca2+]i elevations induced either by histamine (10 microM) or short voltage-clamp depolarizations. The current reversal potential was close to the K+ equilibrium potential, being a function of external K+ concentration. Current fluctuation analysis suggested a unit conductance of 3-5 pS for the channel that underlies this K+ current. The current could be blocked by apamin (1 microM). Whole-cell current-clamp recordings showed that histamine (10 microM) application caused a transient hyperpolarization, which evolved in parallel with the [Ca2+]i changes. It is proposed that a small-conductance Ca(2+)-activated K+ channel is present in the membrane of bovine chromaffin cells and may be involved in regulating catecholamine secretion by the adrenal glands of various species.
    [Abstract] [Full Text] [Related] [New Search]