These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Diagnosis of carotid artery disease: preliminary experience with maximum-intensity-projection spiral CT angiography.
    Author: Marks MP, Napel S, Jordan JE, Enzmann DR.
    Journal: AJR Am J Roentgenol; 1993 Jun; 160(6):1267-71. PubMed ID: 8498231.
    Abstract:
    OBJECTIVE: Spiral CT allows continuous data to be acquired rapidly, and if a correctly timed IV bolus of contrast material is given, spiral CT angiography can be performed. This study was designed to evaluate spiral CT angiography with maximum-intensity-projection reconstructions for assessing the degree of carotid artery stenosis. SUBJECTS AND METHODS: Spiral CT angiography (of 28 carotid bifurcations in 14 patients) was compared in a blinded fashion with conventional angiography (of 28 bifurcations) and with two-dimensional time-of-flight MR angiography (of 12 bifurcations) to assess degree of stenosis. A nonblinded comparison of the contour of the lumen at the site of stenosis was then made between conventional angiography, spiral CT angiography, and MR angiography. The degree of stenosis was measured in each internal carotid artery and categorized as mild (< 30%), moderate (30-69%), or severe (70-99%) stenosis or as occlusion. Maximum-intensity-projection images were used for the evaluations; however, if calcification was circumferential and the lumen of the carotid artery could not be analyzed in the area of the calcification, the axial source images were used. RESULTS: The results of CT angiography and conventional angiography agreed overall in 25 (89%) of 28 cases (r = .921, p = .05, Spearman rank correlation). The presence of severe stenosis or occlusion was correctly identified in seven of seven cases. In the moderate and mild stenosis categories, 18 (86%) of 21 were correctly identified (r = .802, p = .122). Three internal carotid arteries (11%) had circumferential calcification that necessitated evaluation of the axial source images, and the measurements obtained from the axial images agreed well with angiographic findings. MR angiography correlated well with the various categories of stenosis. However, when we compared MR angiography directly with CT angiography and conventional angiography, we found that the degree of stenosis was overestimated when MR angiography was used. CONCLUSION: Our results show that spiral CT angiography shows normal and abnormal carotid anatomy well when compared with conventional angiography. The short examination time and clear depiction of arterial caliber in areas of stenosis are significant advantages of spiral CT angiography compared with MR angiography.
    [Abstract] [Full Text] [Related] [New Search]