These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: A possible mechanism for the formation of 14CO2 via 2-methoxyacetic acid in mice exposed to 14C-labeled 2-methoxyethanol. Author: Sumner SC, Fennell TR. Journal: Toxicol Appl Pharmacol; 1993 May; 120(1):162-4. PubMed ID: 8511778. Abstract: Small amounts (6-12%) of radioactivity administered by gavage as 14C-labeled 2-methoxyethanol (2-ME) or 2-methoxyacetic acid (2-MAA) to pregnant mice are exhaled as 14CO2 as well as accumulated in tissues that are highly active in the synthesis of macromolecules (Sleet et al., Toxicol. Appl. Pharmacol. 84, 25-35, 1986; Mebus et al., Toxicol. Appl. Pharmacol. 112, 87-94, 1992). In addition, pregnant CD-1 mice similarly administered 13C-labeled 2-ME excrete urinary metabolites that may arise from incorporation of a coenzyme A thioester of 2-MAA into the Krebs cycle, forming methoxycitrate (Sumner et al., Chem. Res. Toxicol. 5, 553-560, 1992). Based on these previously published observations, we propose a mechanism for the further metabolism of methoxycitrate that is consistent with the detection of 14CO2 after administering either [1-14C]2-MAA, [2-14C]2-ME, or [methoxy-14C]2-ME to mice. This postulated pathway may also explain the tissue-specific accumulation of radioactivity arising from [14C]2-ME.[Abstract] [Full Text] [Related] [New Search]