These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Coordinate expression of the alpha and beta chains of human granulocyte-macrophage colony-stimulating factor receptor confers ligand-induced morphological transformation in mouse fibroblasts.
    Author: Sasaki K, Chiba S, Hanazono Y, Mano H, Yazaki Y, Hirai H.
    Journal: J Biol Chem; 1993 Jun 25; 268(18):13697-702. PubMed ID: 8514801.
    Abstract:
    Two distinct components, alpha and beta chains, which compose the high affinity receptor for human granulocyte-macrophage colony-stimulating factor (GM-CSF) do not contain any catalytic domains of known enzymes. However, in mouse lymphoid cell lines transfected with cDNAs of the both chains, GM-CSF triggers tyrosine phosphorylation of several cellular proteins and allows continuous proliferation. To elucidate whether the high affinity receptor functions in nonhematopoietic cells, we have reconstituted human GM-CSF receptor in mouse NIH3T3 fibroblasts. In NIH3T3 clones, in which the high affinity receptor is reconstituted, human GM-CSF has triggered rapid tyrosine phosphorylation of cellular proteins, transfected beta chain, and another protein of 40-45 kDa. Moreover, human GM-CSF stimulated DNA synthesis and induced morphological transformation. These observations indicate that coordinately expressed alpha and beta chains of human GM-CSF receptor activates intrinsic protein-tyrosine kinases by the stimulation with human GM-CSF and that the activated protein-tyrosine kinases phosphorylate tyrosine residues of an intrinsic 40-45-kDa protein and the transfected beta chain in NIH3T3 cells. Activation of the protein-tyrosine kinases is likely to have biological functions to induce DNA synthesis and morphological transformation of mouse fibroblasts.
    [Abstract] [Full Text] [Related] [New Search]