These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Mobilization of a vesamicol-insensitive pool of acetylcholine from a sympathetic ganglion by ouabain. Author: Prado MA, Gomez MV, Collier B. Journal: J Neurochem; 1993 Jul; 61(1):45-56. PubMed ID: 8515287. Abstract: These experiments investigate the release of transmitter from the perfused superior cervical ganglia of cats induced by ouabain in the absence or presence of 2-(4-phenylpiperidino)cyclohexanol (vesamicol), a blocker of acetylcholine (ACh) uptake. Ouabain, perfused through the ganglia, released ACh in a Ca(2+)-dependent way. Vesamicol caused some inhibition of the release of ACh by ouabain; however, under this condition, the Na+,K(+)-ATPase inhibitor released five times more transmitter than did preganglionic stimulation at 5 Hz. Also, when ganglia exposed to vesamicol were depleted of the impulse-releasable pool of ACh, subsequent perfusion with ouabain released ACh, and this included ACh newly synthesized in the presence of vesamicol; this phenomenon could be inhibited by the lack of Ca2+ and presence of EGTA, and was completely abolished by perfusion with a medium containing 18 mM Mg2+. To test whether the release of this vesamicol-insensitive Ca(2+)-dependent pool by ouabain is associated with a decrease in the number of synaptic vesicles, ganglia treated with the ATPase inhibitor after the depletion of the impulse-releasable pool of ACh were fixed for electron microscopy. In the presence of Ca2+, coincident with the release of the vesamicol-insensitive pool of ACh, nerve terminals were almost depleted of synaptic vesicles; ganglia treated similarly, but with medium containing 18 mM Mg2+ instead of Ca2+, were not depleted of synaptic vesicles. These results suggest that ouabain releases a vesamicol-insensitive pool of ACh from the sympathetic ganglion and also support the notion that this compartment is vesicular and its exocytosis depends on extracellular Ca2+. It is suggested that empty-vesicle recycling in the presence of vesamicol restricts mobilization of full vesicles to release sites.[Abstract] [Full Text] [Related] [New Search]