These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Characterization of ion channels from Acetabularia plasma membrane in planar lipid bilayers. Author: White PJ, Smahel M, Thiel G. Journal: J Membr Biol; 1993 Apr; 133(2):145-60. PubMed ID: 8515431. Abstract: Plasma membrane from Acetabularia acetabulum was prepared by aqueous-polymer two-phase partitioning and incorporated into planar 1-palmitoyl-2-oleoyl phosphatidylethanolamine bilayers by stirring in the presence of a (cis:trans) 325:100 mM KCl gradient. Under these conditions five distinct K(+)-selective channels were observed which had unitary chord-conductances (determined between 30 mV either side of the reversal potential) and frequencies of incorporation (in parentheses) of 1,600 pS (26%), 485 pS (21%), 259 pS (53%), 140 pS (37%) and 27 pS (37%). Two Cl(-)-selective channels were also observed, which had unitary chord-conductances of 8 and 48 pS and were present in 21 and 16% of bilayers, respectively. The voltage dependencies of channel open probability (Po), open-state time constant (tau o) and closed-state time constant (tau c) were determined for the 259, 140 and 27 pS K+ channels. The Po of all three channels increased with increasingly positive membrane potentials. Thus, since these channels were oriented with their extracellular face adjacent to the cis chamber, which was grounded, all would exhibit outward rectification in vivo. Changes in Po were effected by modulation of tau c in all channels, which shortened as membrane potentials became more positive, and also of tau o in the 140 and 27 pS channels, which increased as membrane potentials became more positive. Extracellular (cis) KCl concentration (and/or the KCl gradient across the bilayer) affected the Po of all three K+ channels, shifting the Po/membrane potential relationship in the direction of the change in the potassium reversal potential. In all channels this was achieved largely by changes in tau c.[Abstract] [Full Text] [Related] [New Search]