These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Protein-heme interactions in hemoglobin from the mollusc Scapharca inaequivalvis: evidence from resonance Raman scattering. Author: Song S, Boffi A, Chiancone E, Rousseau DL. Journal: Biochemistry; 1993 Jun 29; 32(25):6330-6. PubMed ID: 8518278. Abstract: Resonance Raman spectra of the Scapharca inaequivalvis homodimeric hemoglobin (HbI) have been measured for the ligand-bound and ligand-free ferrous forms of the protein. In the deoxy derivative, the iron-histidine (Fe-His) stretching mode, proposed as a marker of the oxygen affinity and a conduit linking the hemes to the subunit interface, gives rise to a Raman peak centered at 203 cm-1, an unusually low frequency compared to that reported for other hemoglobins and myoglobins. In the CO-bound derivative, three isotope-sensitive lines at 517, 583, and 1945 cm-1 have been assigned to the Fe-CO stretching, Fe-C-O bending, and C-O stretching modes, respectively. From the frequencies of these modes and from their relative intensities, the Fe-C-O geometry appears to be tilted from axial coordination and shows a bending angle which has been estimated to be about 171 +/- 5 degrees. For the oxygen derivative, only one isotope-sensitive peak has been detected at 570 cm-1, in line with the values found for myoglobin and other hemoglobins. Resonance Raman spectra of HbI modified with p-(chloromercuri)benzoate (PMB) at Cys92 have been measured in parallel with those of the native protein. Despite the large increase in oxygen affinity produced by the PMB modification, the frequency of the Fe-His stretching mode is unshifted in the deoxy derivative.(ABSTRACT TRUNCATED AT 250 WORDS)[Abstract] [Full Text] [Related] [New Search]