These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Synaptic mechanisms acting on lumbar motoneurons during postural augmentation induced by serotonin injection into the rostral pontine reticular formation in decerebrate cats.
    Author: Takakusaki K, Kohyama J, Matsuyama K, Mori S.
    Journal: Exp Brain Res; 1993; 93(3):471-82. PubMed ID: 8519336.
    Abstract:
    Intrapontine microinjections of serotonin in acutely decerebrated cats resulted in the bilateral augmentation of the postural muscle tone of the hindlimbs. Optimal injection sites were located in the dorsomedial part of the rostral pontine reticular formation corresponding to the nucleus reticularis pontis oralis (NRPo). In this study, attempts were made to elucidate the cellular basis for the serotoninergically induced augmentation of postural muscle tone by recording the electromyographic (EMG) activity of hindlimb extensor muscles, the monosynaptic reflex responses evoked by electrical stimulation of group Ia muscle afferent fibres and the membrane potentials of hindlimb alpha-motoneurons (MNs). Serotonin injections resulted not only in the augmentation of the EMG activity of gastrocnemius soleus muscles, but also in the restoration of EMG suppression, which was induced by previous injection of carbachol into the NRPo. Extensor and flexor monosynaptic reflex responses were facilitated by serotonin injections into the NRPo. Such reflex facilitation was not induced by serotonin injections into the mesencephalic or the medullary reticular formation. Intrapontine serotonin injections resulted in membrane depolarization of extensor and flexor MNs with decreases in input resistance and rheobase. Spontaneous depolarizing synaptic potentials (EPSPs) increased in both frequency and amplitude. Peak voltage of Ia monosynaptic EPSPs also increased. Serotonin injections which followed carbachol injections resulted in membrane depolarization of MNs along with an increase in the frequency of spontaneous EPSPs and a decrease in carbachol-induced inhibitory postsynaptic potentials. Following pontine carbachol injections, antidromic and orthodromic responses in MNs were suppressed. Discharges of MNs evoked by intracellular current injections were also suppressed, but were restored following serotonin injections. These results indicate that postsynaptic excitation, presynaptic facilitation and disinhibition (withdrawal of postsynaptic inhibition) simultaneously act on the hindlimb MNs during serotonin-induced postural augmentation and restoration.
    [Abstract] [Full Text] [Related] [New Search]