These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: c-fos-induced osteosarcoma formation in transgenic mice: cooperativity with c-jun and the role of endogenous c-fos.
    Author: Wang ZQ, Liang J, Schellander K, Wagner EF, Grigoriadis AE.
    Journal: Cancer Res; 1995 Dec 15; 55(24):6244-51. PubMed ID: 8521421.
    Abstract:
    Transgenic mice overexpressing the c-fos proto-oncogene in bone develop osteosarcomas, whereas mice overexpressing c-Jun are normal. In this study, we investigated whether Fos and Jun would cooperate in vivo and whether the threshold levels of Fos are important in osteosarcoma formation. Fos-Jun double-transgenic mice develop osteosarcomas at a higher frequency than single-Fos transgenic mice with no differences in the time of onset of tumor formation. Histological and histochemical analyses indicated that Fos-Jun tumors contained greater quantities of neoplastic bone, were more remodeled, and contained a greater number of multinucleated osteoclast-like cells than tumors isolated from age-matched, single transgenic littermates. In contrast, overexpression of Fos in knockout mice that lack endogenous Fos resulted in a decrease in the number of tumor-bearing mice; osteosarcomas were almost absent in c-fos -/- mice, whereas tumor incidence was reduced to approximately 50% in c-fos +/- mice. Cell lines isolated from Fos-Jun transgenic tumors expressed high levels of both transgenes but significantly lower levels of the jun-related gene junB compared with cells expressing only a c-fos transgene. Osteoblastic marker genes were expressed at varying levels in different cell lines, but expression of interstitial collagenase (matrix metalloproteinase-1) was enhanced in cells derived from Fos-Jun tumors. These studies demonstrate that coexpression of a c-jun transgene can enhance Fos-induced oncogenesis in vivo and suggest that a critical level of Fos is necessary for osteosarcoma development.
    [Abstract] [Full Text] [Related] [New Search]