These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: The antihyperglycemic agent englitazone prevents the defect in glucose transport in rats fed a high-fat diet. Author: Stevenson RW, McPherson RK, Persson LM, Genereux PE, Swick AG, Spitzer J, Herbst JJ, Andrews KM, Kreutter DK, Gibbs EM. Journal: Diabetes; 1996 Jan; 45(1):60-6. PubMed ID: 8522061. Abstract: The effects of englitazone in male Wistar rats fed a high-fat diet (59% of calories as fat) were compared with control rats fed a high-carbohydrate diet (69% of calories as carbohydrate) (5-15 animals per group). Insulin-stimulated (17 nmol/l) 2-deoxy-D-glucose (2-DG) uptake was inhibited 31% in adipocytes isolated from rats on the high-fat diet for 3 weeks, but englitazone (50 mg/kg for the last 7 days) normalized the response. There was a selective decrease in GLUT4 (54 +/- 5% of high-carbohydrate) in epididymal fat from rats on the high-fat diet for 3 weeks, but englitazone treatment did not reverse the defect in GLUT4 (43 +/- 8% of high-carbohydrate) or increase GLUT1 (81 +/- 12% of high-carbohydrate). Englitazone normalized oral glucose (1 g/kg body wt) intolerance and excessive (210% of high-carbohydrate) liver glycogen deposition (from [14C]glucose) caused by the high-fat diet. The high-fat diet tended to decrease insulin receptor substrate-1 (IRS-1) and phosphatidylinositol-3'-kinase (PI-3-kinase) expression in epididymal fat (26% decrease; P < 0.1). Englitazone did not reverse this decrease in IRS-1 and PI-3-kinase levels in fat from high-fat-fed rats (there was a further 25-30% decrease, P < 0.05), nor did it increase PI-3-kinase activity in 3T3-L1 adipocytes under conditions (48 h incubation) where it stimulated 2-DG uptake sixfold or enhanced insulin-stimulated 2-DG uptake. In summary, englitazone prevented the insulin resistance associated with a high-fat diet, but the mechanism of action does not involve changes in fat or muscle glucose transporter content and may not involve activation of the insulin signaling pathway via PI-3-kinase.[Abstract] [Full Text] [Related] [New Search]