These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Induction of adrenal tyrosine hydroxylase mRNA by single immobilization stress occurs even after splanchnic transection and in the presence of cholinergic antagonists. Author: Kvetnanský R, Nankova B, Hiremagalur B, Viskupic E, Vietor I, Rusnak M, McMahon A, Kopin IJ, Sabban EL. Journal: J Neurochem; 1996 Jan; 66(1):138-46. PubMed ID: 8522945. Abstract: Immobilization (IMO) stress elevates plasma catecholamines and increases tyrosine hydroxylase (TH) gene expression in rat adrenals. This study examined the mechanism(s) of IMO-induced changes in adrenal TH mRNA levels. Innervation of the adrenal medulla is predominantly cholinergic and splanchnicotomy as well as nicotinic receptor antagonists prevent the cold-induced rise in TH mRNA levels. In this study, the IMO-induced rise in plasma catecholamines, but not TH mRNA levels, was reduced by the antagonist chlorisondamine. Muscarinic antagonist atropine also did not prevent the IMO stress-elicited rise in TH mRNA. Furthermore, denervation of the adrenals by unilateral splanchnicotomy did not block the IMO-induced rise in TH mRNA but completely prevented the induction of neuropeptide Y mRNA. These results suggest that (1) the large increase in adrenal TH gene expression elicited by a single IMO stress is not regulated via cholinergic receptors or splanchnic innervation, and (2) there is a dissociation between regulatory mechanisms of catecholamine secretion and elevation of TH gene expression in the adrenal medulla of rats during IMO stress.[Abstract] [Full Text] [Related] [New Search]