These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: The effects of wortmannin, a potent inhibitor of phosphatidylinositol 3-kinase, on insulin-stimulated glucose transport, GLUT4 translocation, antilipolysis, and DNA synthesis. Author: Evans JL, Honer CM, Womelsdorf BE, Kaplan EL, Bell PA. Journal: Cell Signal; 1995 May; 7(4):365-76. PubMed ID: 8527305. Abstract: PI 3-kinase, an enzyme that selectively phosphorylates the 3-position of the inositol ring, is acutely activated by insulin and other growth factors. The physiological significance of PI 3-kinase activation and, more specifically, its role in insulin action is an area under intense investigation. In this study, we have examined the role of PI 3-kinase activation in mediating selected metabolic and mitogenic effects of insulin employing the fungal metabolite wortmannin, a potent inhibitor of PI 3-kinase activity. In isolated rat and cultured 3T3-L1 adipocytes, wortmannin inhibited insulin-stimulated glucose transport (IC50 = 9 nM) without a significant effect on basal transport. Insulin-stimulated translocation of GLUT4 in isolated rat adipocytes was markedly inhibited by wortmannin. Wortmannin had no effect on either basal or insulin-stimulated glucose utilization in L6 myocytes, a skeletal muscle cell line in which GLUT1 is the predominant transporter isoform. Wortmannin also partially antagonized the antilipolytic effect of insulin on adenosine deaminase-stimulated lipolysis in isolated rat adipocytes. Furthermore, wortmannin caused a significant reduction in insulin-stimulated DNA synthesis in Fao rat hepatoma cells. We conclude that PI 3-kinase activation is necessary for maximum insulin-stimulated glucose transport, translocation of GLUT4, antilipolysis and DNA synthesis.[Abstract] [Full Text] [Related] [New Search]