These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: The in vitro more efficiently repaired cisplatin adduct cis-Pt.GG is in vivo a more mutagenic lesion than the relative slowly repaired cis-Pt.GCG adduct.
    Author: Brandsma JA, de Ruijter M, Visse R, van Meerten D, van der Kaaden M, Moggs JG, van de Putte P.
    Journal: Mutat Res; 1996 Jan 02; 362(1):29-40. PubMed ID: 8538646.
    Abstract:
    The toxic effect and the mutagenicity of two differentially repaired site-specific cis-diamminedichloroplatinum(II) (cis-DDP) lesions were investigated. Detailed analysis of the UvrABC-dependent repair of the two lesions in vitro showed a more efficient repair of the cis-Pt.GG adduct compared to that of the cis-Pt.GCG adduct (Visse et al., 1994). Furthermore, previously, a dependency of cis-DDP mutagenesis on UvrA and UvrB, but not on UvrC was found (Brouwer et al., 1988). To possibly relate survival and mutagenesis to repair, plasmids containing the same site-specific cis-DDP lesions as those that were used in the detailed repair studies were transformed into Escherichia coli. The results indicate that both lesions are very efficiently bypassed in vivo. Mutation analysis was performed using a denaturing gradient gel electrophoresis technique, which allows identification of mutations without previous selection. Although the cis-Pt.GG adduct is in vitro more efficiently repaired than the cis-Pt.GCG adduct, it appeared to be more mutagenic. We present a model in which this result is related to the previously observed dependency of the mutagenicity of cis-DDP lesions on the Uvr A and B proteins.
    [Abstract] [Full Text] [Related] [New Search]