These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: CD34+ endothelial cell lines derived from murine yolk sac induce the proliferation and differentiation of yolk sac CD34+ hematopoietic progenitors. Author: Fennie C, Cheng J, Dowbenko D, Young P, Lasky LA. Journal: Blood; 1995 Dec 15; 86(12):4454-67. PubMed ID: 8541534. Abstract: Embryonic hematopoiesis is initiated in part in the blood islands of the yolk sac. Previous confocal microscopic analysis has shown that the CD34 antigen, a mucin-like cell surface glycoprotein that is expressed by hematopoietic progenitors and all endothelial cells of the adult and embryo, is also found on a subset of luminal hematopoietic-like cells in the yolk sac blood islands as well as on the vascular endothelium lining these early hematopoietic locations. We show here that, as in all other hematopoietic sites thus far examined, immunoaffinity-purified CD34+ nonadherent cells from murine yolk sacs contain the vast majority of erythroid and myeloid progenitor cell colony forming activity. To examine the developmental interactions between these CD34+ hematopoietic progenitor cells of the yolk sac and the CD34+ yolk sac endothelium, we have immunaffinity-purified adherent endothelial cells from day 10.5 yolk sacs using CD34 antiserum and produced cell lines by transformation with a retrovirus expressing the polyoma middle T antigen. Analysis of these cell lines for CD34, von Willebrand's factor, FLK 1 and FLT 1 expression, and capillary growth in Matrigel indicates that they appear to be endothelial cells, consistent with their original phenotype in vivo. Coculture of yolk sac CD34+ hematopoietic cells on these endothelial cell lines results in up to a 60-fold increase in total hematopoietic cell number after approximately 8 days. Analysis of these expanded hematopoietic cells showed that the majority were of the monocyte/macrophage lineage. In addition, examination of the cultures showed the rapid formation of numerous cobblestone areas, a previously described morphologic entity thought to be representative of early pluripotential stem cells. Scrutiny of the ability of these endothelial cell lines to expand committed progenitor cells showed up to a sixfold increase in erythroid and myeloid colony-forming cells after 3 to 6 days in culture, consistent with the notion that these embryonic endothelial cells mediate the expansion of these precursor cells. Polymerase chain reaction analyses showed that most of the cell lines produce FLK-2/FLT-3 ligand, stem cell factor, macrophage colony-stimulating factor, leukemia-inhibitory factor, and interleukin-6 (IL-6), whereas there is a generally low or not measurable production of granulocyte colony-stimulating factor, granulocyte-macrophage colony-stimulating factor, IL-1, IL-3, transforming growth factor beta-1, erythropoietin, or thrombopoietin. The output of mature hematopoietic cells from these cocultures can be modified to include an erythroid population by the addition of exogenous erythropoietin. These data suggest that endothelial cell lines derived form the yolk sac provide an appropriate hematopoietic environment for the expansion and differentiation of yolk sac progenitor cells into at least the myeloid and erythroid lineages.[Abstract] [Full Text] [Related] [New Search]