These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Activation of ternary complex factor Elk-1 by stress-activated protein kinases.
    Author: Gille H, Strahl T, Shaw PE.
    Journal: Curr Biol; 1995 Oct 01; 5(10):1191-200. PubMed ID: 8548291.
    Abstract:
    BACKGROUND: The mammalian response to stress results in the activation of stress-activated protein kinases (also known as cJun N-terminal kinases; SAPKs or JNKs), which are a sub-group of the mitogen-activated protein (MAP) kinase family. The SAPKs are involved in the upregulation of activity of the transcription factor AP-1 by post-translational modification of two of its components, cJun and ATF2. AP-1 activity can also be elevated by increased expression of the Fos protein, a further AP-1 component. Elk-1 (also called p62TCF), a transcription factor involved in the induction of the expression from the c-fos promoter through the promoter's serum response element, is known to be activated as a result of phosphorylation by the MAP kinases ERK1 and ERK2. However, induction of c-fos expression in response to noxious agents takes place in the absence of ERK activation. We therefore investigated whether SAPKs similarly upregulate c-fos expression by phosphorylating Elk-1. RESULTS: Elk-1 is activated in response to stimuli other than mitogenic signals. Both p46SAPK and p54SAPK interact physically with, and phosphorylate, Elk-1. The capacity of Elk-1 to form a ternary complex with serum response factor in vitro is thereby elevated. In vivo, selective activation of SAPKs stimulates formation of the ternary complex containing Elk-1, serum response factor and the serum response element, and enhances Elk-1-dependent transcription. Expression of the SAPK upstream-activator kinase, MEKK1, induces SAPK activation and c-fos transcription in the absence of ERK activity. Phosphopeptide mapping of Elk-1 phosphorylated with p46SAPK or p54SAPK reveals Ser383, a residue critical for ternary complex formation and transcriptional activation, to be the major phosphorylation site. CONCLUSION: Elk-1 responds to stress-induced, as well as mitogenic, signals by stimulating c-fos transcription through the serum response element. Phosphorylation of Elk-1 by SAPKs and the ensuing expression of Fos protein thus constitutes an additional mechanism by which cells can upregulate AP-1 activity in response to stress.
    [Abstract] [Full Text] [Related] [New Search]