These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Tamoxifen metabolic activation: comparison of DNA adducts formed by microsomal and chemical activation of tamoxifen and 4-hydroxytamoxifen with DNA adducts formed in vivo. Author: Moorthy B, Sriram P, Pathak DN, Bodell WJ, Randerath K. Journal: Cancer Res; 1996 Jan 01; 56(1):53-7. PubMed ID: 8548775. Abstract: One of our laboratories recently showed by 32P-postlabeling that administration of tamoxifen to mice induces two groups of hepatic DNA adducts comprising two major spots, nos. 3 and 5, respectively. 4-Hydroxytamoxifen and alpha-hydroxytamoxifen appear to be the proximate metabolites of groups I and II adducts, respectively. The relative significance of these two adduct groups for tamoxifen carcinogenicity remains to be established. To determine the activation mechanism(s) of tamoxifen and 4-hydroxytamoxifen, in vivo adducts were compared by 32P-postlabeling with adducts generated by microsomal or chemical activation in vitro. Microsomal activation of 4-hydroxytamoxifen and tamoxifen, respectively, in the presence of DNA and cumene hydroperoxide, induced two adducts, which mapped similarly to the corresponding in vivo adduct spots 3 and 5. Chemical oxidation of 4-hydroxytamoxifen with silver(II) oxide, followed by incubation of the product(s) with DNA, elicited the formation of a major spot (Q1), while tamoxifen itself did not react. Rechromatographic analyses revealed that in vitro fractions 3 and Q1 (from 4-hydroxytamoxifen) matched the major in vivo group I adduct fraction 3, consistent with the hypothesis that 4-hydroxytamoxifen is a precursor for adduct fraction 3 in vivo. The in vitro adduct fraction 5 (from tamoxifen) was identical to that formed in vivo, indicating that the metabolic pathway for the formation of group II adducts did not involve 4-hydroxytamoxifen. In conclusion, the results support a model where primary metabolites of tamoxifen undergo secondary metabolism to form DNA adducts, which are detected in vivo after treatment with tamoxifen or 4-hydroxytamoxifen.[Abstract] [Full Text] [Related] [New Search]