These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Role of the C terminus in antigen P1 surface localization in Streptococcus mutans and two related cocci.
    Author: Homonylo-McGavin MK, Lee SF.
    Journal: J Bacteriol; 1996 Feb; 178(3):801-7. PubMed ID: 8550516.
    Abstract:
    The C terminus of the major surface protein P1 from Streptococcus mutans is composed of a hydrophilic domain, an LPNTGV motif, a hydrophobic domain, and a charged tail. These features are shared by surface proteins from many gram-positive coccal bacteria. To investigate the role of the C-terminal domains in antigen P1 surface localization, full-length and truncated P1 gene constructs, which were expressed on the shuttle vector pDL276, were transformed into the P1-negative mutant S. mutans SM3352, Streptococcus gordonii DL-1, and Enterococcus faecalis UV202. Transformants were tested for expression of P1 by enzyme-linked immunosorbent assaying and Western blotting. The results showed that full-length P1 was expressed by transformants of all three bacteria and was localized on the cell surface. A fusion protein composed of the Staphylococcus aureus fibronectin binding protein C terminus and the P1 protein N terminus was found to surface localize in S. mutans. Deletion of the entire C-terminal domains resulted in P1 being expressed in the culture supernatant. A P1 truncation, which carried only the hydrophilic domain at its C terminus, was found partially associated with the cell surface. This truncated P1 was readily removed from the isolated cell wall by hot sodium dodecyl sulfate-mercaptoethanol extraction. In contrast, the full-length P1 remained associated with the isolated cell wall after similar treatment, suggesting covalent linkages between the full-length P1 and the cell wall. The results described above showed that antigen P1 was anchored to the cell wall by its C-terminal domains probably via covalent linkages with the cell wall. The results also support a universal mechanism involving the C-terminal domains for protein surface localization among this group of gram-positive bacteria.
    [Abstract] [Full Text] [Related] [New Search]