These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Semiquantitative analysis by scanning electron microscopy of cochlear hair cell damage by ototoxic drugs. Author: Saito T, Manabe Y, Honda N, Yamada T, Yamamoto T, Saito H. Journal: Scanning Microsc; 1995 Mar; 9(1):271-80; discussion 280-1. PubMed ID: 8553022. Abstract: The ototoxicity of cisplatin and carboplatin in the organ of Corti of the guinea pig was evaluated semiquantitatively. Damage of the stereocilia of outer hair cells (OHCs) observed by scanning electron microscopy (SEM) was classified into normal, grade 1 (10-50% loss of stereocilia), grade 2 (less than 50% remaining stereocilia), or grade 3 (missing stereocilia). The OHCs observed by light microscopy (LM) were classified as remaining or missing cells. Fifty OHCs of each row in the middle part of each turn of the cochlea were counted (a total of 150 cells per turn). Guinea pigs were administered 5 mg/kg of cisplatin or 50 mg/kg of carboplatin intraperitoneally for three consecutive days. In groups 1 and 2, in which both cochlea were fixed in 2.5% glutaraldehyde and 1% osmium tetroxide (OsO4) and observed by SEM, the percentages of damage of the OHC stereocilia were similar in each cochlear turn bilaterally. In group 3, the right cochleae were fixed in OsO4 and observed by phase contrast microscopy as surface preparations. Left cochleae were submitted for SEM observation. Missing and grade 3 cells were observed at similar percentages in each row of each turn. In group 4, succinate dehydrogenase staining was performed in the right cochleae and observed by LM. The degree of damage in the right cochleae was compared with that of the left cochleae which was observed by SEM. On average, the mean numbers of missing cells and cells showing grade 3 damage were similar in each row of each turn. From these similarities of evaluation of ototoxicity at LM and SEM levels, it was concluded that semiquantitative analysis by SEM only is appropriate for the assessment of ototoxicity.[Abstract] [Full Text] [Related] [New Search]