These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Interactions between mutant and wild-type band 3 subunits in hereditary Southeast Asian ovalocytic red blood cell membranes. Author: Salhany JM, Schopfer LM. Journal: Biochemistry; 1996 Jan 09; 35(1):251-7. PubMed ID: 8555182. Abstract: Red cell membranes from individuals with Southeast Asian ovalocytosis (SAO) contain approximately equal proportions of wild-type band 3 and a mutant SAO band 3 which lacks residues 400-408. It is known that the Vmax for anion exchange in SAO cells is reduced by about 50%, that SAO band 3 does not transport anions when expressed alone in a cellular expression system, that SAO band 3 does not bind stilbenedisulfonates, and that about 50% of the band 3 exists as wild-type/SAO heterodimers. In this report, we show that the kinetics of H2DIDS (4,4'-diisothiocyanatodihydro-2,2'-stilbenedisulfonate) release from the wild-type band 3 in SAO membranes is biphasic. The two phases were present in about equal proportions, with rate constants differing by about 5-fold. In contrast; control cells showed monophasic, exponential kinetics with a rate constant comparable to that of the fast phase of SAO membranes. We assign the fast phase in SAO membranes to H2DIDS release from wild-type subunits within homodimers and the slow phase to H2DIDS release from the wild-type subunit within the heterodimer. No differences were observed in kinetic studies of H2DIDS binding. These results suggest that the mutant band 3 subunit alters the conformation of its neighboring wild-type subunit within the heterodimer, resulting in about a 4-fold higher H2DIDS affinity. Additional evidence suggesting that the interactions in the heterodimer may be confined to a region of the wild-type subunit containing the C-terminal subdomain is presented. The relationship of these subunit interactions to the observation of a reduced cellular anion transport function is discussed.[Abstract] [Full Text] [Related] [New Search]