These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Acetyltransfer precedes uridylyltransfer in the formation of UDP-N-acetylglucosamine in separable active sites of the bifunctional GlmU protein of Escherichia coli.
    Author: Gehring AM, Lees WJ, Mindiola DJ, Walsh CT, Brown ED.
    Journal: Biochemistry; 1996 Jan 16; 35(2):579-85. PubMed ID: 8555230.
    Abstract:
    The GlmU protein is a bifunctional enzyme with both acetyltransferase and uridylyltransferase (pyrophosphorylase) activities which catalyzes the transformation of glucosamine-1-P, UTP, and acetyl-CoA to UDP-N-acetylglucosamine [Mengin-Lecreulx, D., & van Heijenoort, J. (1994) J. Bacteriol. 176, 5788-5795], a fundamental precursor in bacterial peptidoglycan biosynthesis and the source of activated N-acetylglucosamine in lipopolysaccharide biosynthesis in Gram-negative bacteria. In the work described here, the GlmU protein and truncation variants of GlmU (N- and C-terminal) were purified and kinetically characterized for substrate specificity and reaction order. It was determined that the GlmU protein first catalyzed acetyltransfer followed by uridylyltransfer. The N-terminal portion of the enzyme was capable of only uridylyltransfer, and the C-terminus catalyzed only acetyltransfer. GlmU demonstrated a 12-fold kinetic preference (kcat/Km, 3.1 x 10(5) versus 2.5 x 10(4) L.mol-1.s-1) for acetyltransfer from acetyl-CoA to glucosamine-1-P as compared to UDP-glucosamine. No detectable uridylyltransfer from UTP to glucosamine-1-P was observed in the presence of GlmU; however, the enzyme was competent in catalyzing the formation of UDP-N-acetylglucosamine from UTP and N-acetylglucosamine-1-P (kcat/Km 1.2 x 10(6) L.mol-1.s-1). A two active site model for the GlmU protein was indicated both by domain dissection experiments and by assay of the bifunctional reaction. Kinetic studies demonstrated that a pre-steady-state lag in the production of UDP-N-acetylglucosamine from acetyl-CoA, UTP, and glucosamine-1-P was due to the release and accumulation of steady-state levels of the intermediate N-acetylglucosamine-1-P.
    [Abstract] [Full Text] [Related] [New Search]