These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: [Modulation of the antitumor activity of 1-(4-amino-2-methyl-5-pyrimidinyl)methyl-3-(2-chloroethyl)-3-nitrosoure a by O(6)-methyl-2'-deoxyguanosine--a new inhibitor of O(6)-alkylguanine-DNA-alkyltransferase]. Author: Dederer LIu, Sokolova IS, Bakhmedova AA, Miniker TD, Mel'nik SIa, Gorbacheva LB. Journal: Biokhimiia; 1995 Sep; 60(9):1521-9. PubMed ID: 8562657. Abstract: O6-Methyl-2'-deoxyguanosine (O6-MedG), a novel inhibitor of O6-alkylguanine-DNA alkyltransferase (O6-AGT), has been synthesized. The ability of O6-MedG to deplete the O6-AGT activity in leukemia L1210 and melanoma B16 cells in vivo has been studied. After intraperitoneal administration of O6-MedG to mice bearing leukemia L1210 or melanoma B16, the activity of O6-AGT in tumour cells decreased by 50%. Pretreatment of leukemia L1210 bearing mice with O6-MedG (200 mg/kg) 24 hours prior to ACNU (15 mg/kg) administration resulted in six out of seven 60-day survivors. Treatment of mice with ACNU (15 mg/kg) alone increased the life span by 200%. Treatment of melanoma B16 bearing mice with O6-MedG and 3 hours thereafter with ACNU resulted in a 50% inhibition of tumour growth, whereas the inhibiting effect of ACNU alone was 16%. There was no difference in leukemia growth when L1210/BCNU bearing mice were treated with O6-MedG followed by ACNU treatment. In vivo ACNU (15 mg/kg) produced a deep and prolonged inhibition of DNA, RNA and protein synthesis in leukemia L1210 cells. The DNA synthesis in leukemia L1210/BCNU cells was shown to recover more rapidly than in L1210 cells. The activities of DNA-polymerases alpha and beta and, especially, of O6-AGT were elevated in ACNU-resistant leukemia cells as compared with ACNU-sensitive cells. The activation of some repairing enzymes, such as O6-AGT, DNA-polymerases alpha and beta as well as increased levels of GSH may play a role in the development of drug resistance to ACNU.[Abstract] [Full Text] [Related] [New Search]