These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Inhibition of tumor promoter-induced transformation by retinoids that transrepress AP-1 without transactivating retinoic acid response element.
    Author: Li JJ, Dong Z, Dawson MI, Colburn NH.
    Journal: Cancer Res; 1996 Feb 01; 56(3):483-9. PubMed ID: 8564958.
    Abstract:
    Both retinoic acid (RA) treatment and dominant-negative c-Jun mutant expression effectively inhibit phorbol ester-induced AP-1 activity and induced neoplastic transformation in mouse epidermal JB6 cells. However, both reagents also target non-AP-1 molecules in addition. Because liganded retinoic acid receptors interact with and transactivate RA response elements (RAREs) on DNA, as well as interact with Jun protein to block AP-1 activity, the question arises as to which of these two activities of retinoids is responsible for antitumor-promoting activity. To address this question we generated JB6 promotion-sensitive (P+) cell lines that are stably transfected with a construct containing the collagenase promoter bearing one AP-1-binding site that drives a luciferase reporter gene. The stable collagenase-luciferase-transfected cell lines showed 1.5-3.5-fold enhanced AP-1 activity when treated with 12-0-tetradecanoyl-phorbol-13-acetate (TPA). Up to 90% of TPA-induced AP-1 activity was blocked by retinoids SR11238, SR11302, or trans-RA, but not by retinoid SR11235. Of these retinoids, only RA and SR11235 were able to transactivate RARE-dependent gene expression. Transrepression of TPA-induced AP-1 and transactivation of RARE by RA, SR11238, and SR11302 were concentration dependent at 10(-10) to 10(-6) M retinoid. When tested for activity in inhibiting tumor promoter-induced transformation in JB6 P+ cells, the retinoids specific for AP-1 transrepression were inhibitory, whereas SR11235, which only activated RARE, showed little effect. We thus conclude that the AP-1-blocking activity of retinoids is likely to be responsible for the antitumor-promoting activity. This result, together with the observation that dominant-negative Jun blocks transformation, argues for a requirement of induced AP-1 in the tumor promoter-induced transformation process.
    [Abstract] [Full Text] [Related] [New Search]