These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Does the renin-angiotensin system determine the renal and systemic hemodynamic response to sodium in patients with essential hypertension?
    Author: van Paassen P, de Zeeuw D, Navis G, de Jong PE.
    Journal: Hypertension; 1996 Feb; 27(2):202-8. PubMed ID: 8567042.
    Abstract:
    Many patients with essential hypertension respond to a high dietary sodium intake with a rise in blood pressure. Experimental evidence suggests that the renal hemodynamic response to sodium determines, at least partially, this rise in blood pressure. Our aim was to clarify the role of the renin-angiotensin system in the renal and systemic adaptation to a change in dietary sodium. We studied changes in mean arterial pressure (MAP) (millimeters of mercury), effective renal plasma flow (ERPF), body weight, and immunoreactive renin in 17 patients with essential hypertension and 15 normotensive control subjects, randomly crossing over between a 3-week sodium-restricted (50 mmol/24 h) and a sodium-replete (200 mmol/24 h) diet period. In addition, the effects of renin inhibition by remikiren (600 mg, single oral dose) were studied during the high sodium period. In normotensive control subjects, high sodium intake had no effect on MAP or body weight, whereas ERPF increased (490 +/- 19 to 535 +/- 21 mL/min, P < .05) and immunoreactive renin decreased (32 +/- 6 to 14 +/- 1 pg/mL). In hypertensive subjects, high sodium intake induced a heterogeneous response of MAP (median change, 2.6 mm Hg; range, -4.7 to +21.2; P = NS) and ERPF (median change, 21 mL/min; range, -33 to +98; P = NS). Body weight increased from 81.3 +/- 1.9 to 82.5 +/- 2.0 kg (P < .05), and immunoreactive renin decreased from 18 +/- 3 to 10 +/- 1 pg/mL (P < .05). Interestingly, the patients with a distinct rise in MAP showed a blunted ERPF response to high sodium intake (r = -.70, P < .01) and an increase in body weight (r = .76, P < .001). Moreover, the increase of ERPF was more pronounced in patients with a larger fall in immunoreactive renin (r = .77, P < .001). After administration of remikiren, a heterogeneous response in ERPF was observed: the patients with the blunted ERPF response to high sodium intake showed the largest ERPF rise (r = .70, P < .01). The remikiren-induced rise in ERPF correlated (r = .68, P < .01) with the fall in MAP (114 +/- 2 to 110 +/- 2 mm Hg). In conclusion, in patients with essential hypertension a rise in blood pressure in response to high sodium intake appears to partially be the result of insufficient renal vasodilatation. This seems to be due to an inadequate (intrarenal?) renin-angiotensin system response to increased sodium intake.
    [Abstract] [Full Text] [Related] [New Search]