These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: The role of the C-terminus of the insulin B-chain in modulating structural and functional properties of the hormone.
    Author: Leyer S, Gattner HG, Leithäuser M, Brandenburg D, Wollmer A, Höcker H.
    Journal: Int J Pept Protein Res; 1995 Nov; 46(5):397-407. PubMed ID: 8567184.
    Abstract:
    Within the scope of structure-function studies on the proteohormone insulin, the role of the C-terminal segment B26-B30 for self-association and receptor interaction was analyzed. Insulin derivatives with modifications in the region B26-B30 were synthesized by trypsin-catalyzed coupling reactions of des-(B23-B30)-insulin with synthetic peptides. The peptides were obtained by Fmoc solid-phase peptide synthesis. Insulins with multiple amino acid-->glycine substitutions were examined to distinguish between the influence of the side chains and the influence of the main chain in positions B27-B30 on the self-association of the hormone. The analogues [GlyB27,B28,B29,B30]insulin and [GlyB27,B28,B30]insulin exhibit relative receptor affinities of 80% and self-associate. The successive extension of [AlaB26]des-(B27-B30)-insulin-B26-amide (relative receptor binding 273%) with amino acids corresponding to the native sequence B27-B30 showed the influence of the length of the B-chain on receptor affinity: the extension by B27-threonine amide reduces receptor binding to 71%, all further prolongations have only small effects on the binding. The effect of the B28-side chain on main-chain conformation, self-association and receptor binding was examined with [XB28]des-(B29-B30)-insulin-B28-amides (X = Phe, Gly, D-Pro). While the glycine and D-proline analogues (relative binding 104 and 143%, respectively) retain the self-association properties typical of insulin, [PheB28]des-(B29-B30)-insulin-B28-amide (relative binding 50%) shows diminished self-association. The backbone-modified insulin derivative [SarB26]des-(B27-B30)-insulin-B26-amide (sarcosine = N-methylglycine) exhibits an unexpectedly high receptor affinity of 1100% which demonstrates that the B26-amide hydrogen of the native hormone is not important for receptor binding.
    [Abstract] [Full Text] [Related] [New Search]