These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: ATP modulation of L-type calcium channel currents in guinea pig outer hair cells. Author: Chen C, Nenov A, Norris CH, Bobbin RP. Journal: Hear Res; 1995 Jun; 86(1-2):25-33. PubMed ID: 8567418. Abstract: Ca2+ channel currents and their modulation by adenosine 5'-triphosphate (ATP) in acutely isolated guinea pig outer hair cells (OHCs) were investigated using the whole-cell patch-clamp technique. The current-voltage (I-V) relation of OHCs indicated that the Ca2+ channel opened near -30 mV, and the current reached a maximum at +10 and 0 mV in 20 mM Ca2+ and Ba2+ external solutions, respectively. BayK 8644 (BayK, 2 microM) caused a 3.5-fold increase in peak Ca2+ currents and shifted the I-V curves toward more negative potentials. These results suggest that the majority of Ca2+ channels in OHCs have L-type characteristics. The effects of ATP on Ca2+ channels of OHCs were heterogenous. ATP (100 microM) decreased Ca2+ channel currents by 31.7 +/- 5.6% at 0 mV and shifted Ca2+ tail activation curves toward more depolarized potentials in some cells (N = 6). By contrast, in others, ATP enhanced the currents by 43.5 +/- 12.5% at +10 mV (N = 6). In the presence of BayK, however, ATP-induced inhibition or enhancement of Ca2+ channel currents was attenuated. In addition, 100 microM ATP produced little effect on Ca2+ channel currents in another subpopulation of cells (N = 12). This heterogenous neuromodulation of Ca2+ channel currents by ATP may reflect a functional diversity among OHCs.[Abstract] [Full Text] [Related] [New Search]