These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Ventilatory effects of specific carotid body hypocapnia in dogs during wakefulness and sleep.
    Author: Smith CA, Saupe KW, Henderson KS, Dempsey JA.
    Journal: J Appl Physiol (1985); 1995 Sep; 79(3):689-99. PubMed ID: 8567505.
    Abstract:
    We used extracorporeal perfusion of the vascularly isolated carotid sinus region to determine the effects of specific carotid body chemoreceptor hypocapnia-alkalosis on ventilatory control in the unanesthetized dog. Eight female dogs were studied during wakefulness, non-rapid-eye-movement (NREM) sleep, and rapid eye movement (REM) sleep. Carotid body perfusions lasted from 1 to 2 min, and each trial was preceded by a 1-min control period. Two levels of carotid body hypocapnia were employed, approximately 7 and 14 Torr below eupneic levels in a given dog. We found that 1) During wakefulness and NREM sleep, carotid body hypocapnia caused reduced tidal volume (VT) but not apnea or expiratory time prolongation. 2) The inhibition of ventilation in response to carotid body hypocapnia was graded below normocapnia, showing the highest sensitivity at carotid body PCO2 near 7 Torr below eupneic values. Inhibition reached a maximum near 14 Torr below the eupneic level; VT, inspiratory minute ventilation (VI), and VT-to-inspiratory time ratio fell 31, 23, and 27% in wakefulness and 30, 23, and 30% in NREM sleep. 3) Reductions in ventilation in response to carotid body hypocapnia are lessened but still persist throughout perfusion (up to at least 130 s) despite significant systemic hypercapnia. 4) During REM sleep, carotid body hypocapnia had no consistent inhibitory effect on ventilation until carotid body PCO2 was reduced to values near 14 Torr below the eupneic level, at which point ventilation was similar to wakefulness and NREM. 5) Moderate carotid body hypocapnia was as effective as carotid body hyperoxia in reducing VT and VI. We conclude that carotid body hypocapnia-alkalosis can significantly inhibit eupneic VT and ventilation during wakefulness and NREM sleep and, if the hypocapnia is severe enough, during REM sleep.
    [Abstract] [Full Text] [Related] [New Search]