These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: A human polysialyltransferase directs in vitro synthesis of polysialic acid. Author: Nakayama J, Fukuda M. Journal: J Biol Chem; 1996 Jan 26; 271(4):1829-32. PubMed ID: 8567623. Abstract: Polysialic acid (PSA) is a linear homopolymer of alpha-2,8-linked sialic acid residues whose expression is developmentally regulated and modulates the adhesive property of the neural adhesion molecule, N-CAM. Recently, hamster and human cDNAs encoding polysialyltransferase (PST-1 for the hamster enzyme and PST for the human enzyme) were cloned, and by using the human cDNA it was demonstrated that the expression of PSA in N-CAM facilitates neurite outgrowth (Nakayama, J., Fukuda, M.N., Fredette, B., Ranscht, B., and Fukuda, M. (1995) Proc. Natl. Acad. Sci. U.S.A., 92, 7031-7035; Eckhardt, M.A., Mühlenhoff, M., Bethe, A., Koopman, J., Frosch, M., and Gerardy-Schahn, R. (1995) Nature 373, 715-718.) Although these studies demonstrated that PST-1 and PST synthesize PSA in cultured cells, it was not shown that they could catalyze the polycondensation of alpha-2,8-linked sialic acid on a glycoconjugate template containing alpha-2,3-linked sialic acid. Here we demonstrate that PSA formation by PST is independent from the presence of N-CAM in vivo. We then develop an in vitro assay of PSA synthesis using glycoproteins other than N-CAM as acceptors and a soluble PST as an enzyme source. The soluble PST, produced as a chimeric protein fused with protein A, was incubated with rat alpha 1-acid glycoprotein, fetuin or human alpha 1-acid glycoprotein as acceptors together with the donor substrate CMP-[14C]NeuNAc. Incubation of fetuin with the soluble PST, in particular, resulted in a high molecular weight product that was susceptible to PSA-specific endoneuraminidase. Polysialylated products were not formed when alpha-2,3-linked sialic acid was removed from the acceptor fetuin before incubation. These results establish that a single enzyme, PST, alone can catalyze both the addition of the first alpha-2,8-linked sialic acid to alpha-2,3-linked sialic acid and the polycondensation of all alpha-2,8-linked sialic acids, yielding PSA.[Abstract] [Full Text] [Related] [New Search]