These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Liver-enriched transcription factor HNF-4 and ubiquitous factor NF-Y are critical for expression of blood coagulation factor X.
    Author: Hung HL, High KA.
    Journal: J Biol Chem; 1996 Jan 26; 271(4):2323-31. PubMed ID: 8567696.
    Abstract:
    Blood coagulation Factor X and its activated form Factor Xa play an essential role in the midphase of the clotting cascade. To delineate the mechanisms governing the liver-specific expression of Factor X, we have previously characterized the complete 2.8 kilobase pairs of the 5'-flanking region of Factor X and demonstrated that the first 209 base pairs is sufficient to confer maximal promoter activity in HepG2 cells, a hepatoma cell line that expresses Factor X. We have also shown that mutations at ACTTTG and CCAAT elements located at -56 to -51 and -120 to -116, respectively, significantly reduce the promoter activity. In this report, we demonstrate that Factor X mRNA is primarily but not exclusively expressed in the liver. Using DNase I footprinting analysis, we determine four protein binding sites within the 209-base pair fragment, designated site 1 (-73) to -44), site 2 (-128 to -94), site 3 (-165 to -132), and site 4(-195 to -169). Using gel mobility shift assays in combination with competition and supershift experiments, we demonstrate that hepatocyte nuclear factor 4 and Sp1 bind at site 1, the site which contains the ACTTTG element. Methylation interference assays reveal that HNF-4 and Sp1 contact adjacent sites with minor overlap. HNF-4 and Sp1 appear to bind site 1 in a mutually exclusive fashion. We also demonstrate that HNF-4 can transactivate the Factor X promoter in HeLa cells; mutation at the adjacent Sp1 site further increases the transactivation. Heteromeric transcription factor NF-Y was identified as the protein that binds the CCAAT box at site 2. We conclude that HNF-4 and NF-Y play crucial roles in modulating the activity of the proximal promoter of Factor X.
    [Abstract] [Full Text] [Related] [New Search]